knitter-switch

menu helos

BBBUBWM enter

-

ENT

5

9

Misc.

Count Done

Menu

1

View Tills

4

S

Bills

5

Coin

Help

,C,

heck

00

who have

0

ancel

~~

The second secon

start (ogod)

E R

4

Q W

1440

2+

Ο

8

5

9

6

3

6

6

34

P

Input Systems

knitter-switch Overview

knitter-switch is one of Europe's leading manufacturers of switches. Since its foundation in 1966, **knitter-switch** has remained at the forefront of switch technology and now provides an unrivalled range of switching solutions from basic toggle types to tact switches and membrane and rubber keypads for today's most complex and demanding control applications.

knitter-switch continues to design new switching solutions, employing the latest technologies and materials while ensuring compliance to continuously evolving legislation. We offer the most complete range of switches available to design engineers and bring the added benefits of a local design service, fast turn around on quotations and production quality prototypes together with Far East pricing.

Knitter-switch has its headquarters near Munich, Germany and has subsidiary companies in the UK, France and Asia and strategic alliances with a number of leading global distributors.

Membrane Keypads, Rubber Keypads and complete units with Touch Screens

Membrane keypads offer a unique combination of features to enable fast and simple supply of customerspecific keypads. High quality products, designed in Germany and manufactured in Asia to ensure competitive prices, are backed up by local design and sales support to ensure fast and accurate communications and rapid delivery of each customer's requirements.

Switches are available in flat, poly-domed and metaldomed types, giving a variety of levels of tactile feedback, and life expectancy in excess upto one million operations. All **knitter-switch** membrane keypad designs are tested for resistance to surface scratching, thermal shock, electrical ratings and operating lifetime.

Silicone rubber keypads are manufactured from elastic, non-toxic silicone rubber compounds. Silicone keypads are processed from compression or injection molding. The result is an economic and reliable keypad for small, medium and large production runs. Silicone keypads can be integrated with printed circuit boards or flexible circuits and have excellent resistance to temperature and aging.

Touch screens are available with resistive or capacitive principles as complete customized functional units integrated in modules such as front panels.

Input Systems

Membrane Keypads

- Graphic overlay only or full switching membrane
- Metal, polydome or pushgate contacts
- Tactile or non-tactile feel
- Integrated touch screens, encoder, LEDs and other components
- LCD windows
- ESD/RFI shielding
- Insertable legend options

Rubber Keypads

- Backlighting options
- Various coatings eg epoxy, polyurethane
- Harder rubber options to give 'plastic' feel
- · Various travel/operating force options
- Combination with tactile switches
- · Wide variation of colours and designs
- Plastic key tops available

Rubber Keypad Design

С

Operating life depends on:

• Low Stroke ... less than 1 mm.

40-degree is recommended. • Length of side-wall (as part B

higher the operating force.

illustrated above)

• Angle (as part A illustrated above) ...

• Thickness of side-wall (as part C

structure. The thicker the web, the

Basic Construction Illustration

Life Test

ĺΑ

Tolerance Requirement of Silicone Rubber Key

Dimensions:		Actuation Force:	
0 ~ 10 mm	± 0.10 mm	50 ~ 60 grams	± 15 grams
10 ~ 20 mm	± 0.15 mm	61 ~ 80 grams	± 20 grams
20 ~ 30 mm	± 0.20 mm	81 ~ 100 grams	± 25 grams
30 ~ 40 mm	± 0.25 mm	101 ~ 120 grams	± 30 grams
40 ~ 50 mm	± 0.30 mm	121 ~ 150 grams	± 35 grams
50 ~ 60 mm	± 0.35 mm	151 ~ 200 grams	± 40 grams
60 and above	± 0.6%	201 and above	± 25%

Mechanical and Electrical Properties of Silicone Rubber

	Non-Conductive Silicone
Temperature for use	-55°C ~ +250°C
Specific Gravity	1.15
Tensile Strength	90 kg/cm ²
Tear Strength	13 Kgf/cm
Compression Set	10% (180°C x 22 hrs.)
Elongation at Break	350%
Volume Resistivity	8 x 10 ¹⁴ ohm cm
Contact Resistance	-
Contact Rating (DC)	-
Contact Bounce	-
Chattering	-
Insulation Breakdown	24 Kv/mm
Colour	Colouring possible
Dielectric Constant	4.2 (50 Hz)
Dielectric Tangent	13% (50 Hz)

Force-Stroke Curve of Rubber Keypad

Force		Location	
Fp	Peak Force (FMAX)	0	Original Point
Fu	Max. Return Force	Р	Peak Point
Fc	Contact Force	С	Contact Point
FR	Min. Return Force (FMIN)	R	Return Point
Fм	Max. Return Force	Μ	Max. Return Point
FD	Drop Force (FD = FP - FC)	Travel	
FG	Gap Force (Fg = FP - FM)	O-P	Peak Force (FMAX)
Ohusha			
Stroke		P-C	Contact Force
S1	Peak Stroke	C-S	Min. Return Force (FMIN)
S2	Contact Stroke	S-R-M-O	Gap Force (FG = FP - FM)

Depending on the size of contacts and keyboard layout.

	F /	Force Range	30 ~ 350 grams
7//	$ \wedge $	Stroke Range	0.5 ~ 3.0 mm
		Cycle Life (x10 ³)	500 ~ 2000
	S	Typical uses	Telephone, Remote Control, Auto Radio, Toys, Calculator, etc.
	FL /	Force Range	30 ~ 250 grams
		Stroke Range	0.7 ~ 2.5 mm
		Cycle Life (x10 ³)	500 ~ 2000
	s s	Typical uses	Telephone, Remote Control, Toy: Calculator, etc.
		Foros Bongo	20 150 gromo
	Force hange	30 ~ 150 grains	
		Stroke Range	0.5 ~ 3.0 mm
	/ Ŭ	Cycle Life (x10 ³)	1000 ~ 3000
	Typical uses	Telephone, Remote Control, Toy Measuring Instruments, Office M	

Typical Key Sections and Characteristics

	F	Force Range	30 ~ 80 grams
In	\sim	Stroke Range	2.0 ~ 4.0 mm
		Cycle Life (x10 ³)	5000 ~ 20000
	S	Typical uses	Computer, Typewriter etc.
	F \$	Force Range	30 ~ 200 grams
	\sim	Stroke Range	1.0 ~ 2.5 mm
		Cycle Life (x10 ³)	500 ~ 3000
	S	Typical uses	Telephone, Typewriter, Test Instruments, etc
	F (Force Range	20 ~ 80 grams
		Stroke Range	0.2 ~ 1.0 mm
		Cycle Life (x10 ³)	500 ~ 10000
	S	Typical uses	Typewriter, Household Appliances, Computer, etc.

Rubber Keypad Design

Some Special Design Illustrations

Membrane Keypad Structure

PushGate

Flat Type (POLYDOME, Non-Tactile)

Membrane Switch Structure

Tactile Type

Typical Specification	POLYDOME	METAL DOME	PushGate
Operating voltage	min. 100 mV AC/DC max. 25 VAC / 42 VDC	min. 100 mV AC/DC max. 25 VAC / 42 VDC	min. 3 V AC/DC max. 50 V AC/DC
Breaking current	100 mA	100 mA	50 mA
Max. initial contact resistance	500 Ω	500 Ω	2 Ω
Min. isolation resistance	100 Μ Ω	100 Μ Ω	45 Μ Ω
Operating temperature	–5 °C…+50 °C	–10 °C+80 °C	–40 °C…+85 °C
Endurance	500 000 operations	200 000 operations	1 000 000 operations
Actuation force	0.3 N5 N	0.3 N5 N	2.2 N, 2.8 N
Typ. Travel	0.3 mm0.6 mm	0.25 mm0.4 mm	0.3 mm
Typ. Bounce	3 ms	5 ms	1 ms

Capacitive keypads

Capacitive keypads are wear-free input systems with no moving parts, which are operated by touch (sensor) without pressure.

An inexpensive alternative to the touch screen, they consist of an actual keypad with sensor surfaces arranged in fixed positions and a controller IC.

Spatially, the controller can be both assigned to the keyboard or located on the PCB at the equipment end.

The design in terms of shape and colour scheme is essentially restricted only by the type of surface material

used (insulators such as glass, plastic, wood etc.), so it is also easy to produce multidimensionally curved shapes.

Appropriate arrangement of the sensor surfaces makes it possible for keys, sliders, rotary potentiometers etc. to be reproduced easily.

In addition to applications where ease of cleaning is important (medical technology, food industry, household appliances), this process is particularly suitable for designer (lifestyle, multimedia, home automation) equipment.

Technical Data for the Controller		
Operation voltage	2.75.5 V	
Power consumption	80 µA typ.	
Inputs/Outputs	8 sensor surfaces / 8x digital (L or H active)	
Operating temperature	–20°C ~ +70°C	

Functional units with touch screens

Touch screens operating according to resistive or capacitive principles are an obvious choice for applications in which, as in a monitor display, a variety of input fields (differing in terms of number, size, arrangement) are designed to be active and a robust, closed surface is required.

knitter-switch supplies complete customized functional units in which touch screens, optionally in combination with film keypads, are integrated in modules such as front panels.

Fahrkarten 🛤

Resistive touch screens

These consist of a carrier layer (glass, film) and a surface layer (film), the facing surfaces of which are coated with a transparent conductive material and are held in position in close proximity to one another.

When the film is pressed onto the carrier at a particular point, a conductive connection is created there, the position of which can be determined by means of voltage measurements along the X and Y axes.

Its simple design with a movable surface layer means that the system is inexpensive, but not wear-free.

Since such input systems can also be used with styluses, prostheses etc, they are the technology of choice where accessibility is important.

Specifications (based on the resistive touch screen as an example)

Dimensions	customized	
Operation voltage	5 VDC	
Insulation resistance	> 20 Μ Ω	
Operating temperature	-20°C ~ +70°C	
Service life	>1x10° (pen hitting) or >1x10° (pen sliding)	
Linearity deviation	< 1.5 %	
Transparency	> 80 %	
Surface hardness	3 H (pencil test)	

Capacitive touch screens

These consist of a transparent substrate which is coated with a conductive layer and has an AC voltage source arranged on each of its four corners. When you touch this with your finger, four different currents are produced, and the position can be calculated from the relationship of these currents to one another.

Layout Inquiry

Please sketch out your keypad layout and return to us

(See back page for address details)

Keypads Inquiry Form

Company		
Department		
Attention		
Address		
	Postcode	
Phone	Fax	
Email	Web	

Membrane Requirements

Graphic Layer	LEDs
Overall size	Are embedded LEDs required
What finish is required (matt, gloss or selective texture)	Number and colour
	Will a separate tail be required
Are windows required	
Size	Tail position and length
Position	Position of tail – exit from side and rear
Do they need to be tinted	
Is embossing required	Type of connector (if required)
Pillow or rim	
Number of colours	If ZIF connector being used, get type for ref.
Switches	
Number	Any special features required
Tactile or non-tactile	Insert legends
If tactile: polydome or metal dome	Luminescent inks
	Other
Metal means higher unit cost, lower tool cost. Polydome means lower unit cost, higher tool cost.	
Electrical schematic: "x-y-matrix" or "common return"?	Estimated project volume

Please complete this questionnaire and return to us with your sketch overleaf

(See back page for address details)

Input Systems

Distributor: Sider Electronic Industries Ltd. Tel: 852-23892522 Fax: 852-23574546 Email: info@sider.com.hk URL: www.sider.com.hk

knitter-switch